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Abstract

We show using the most complete phylogeny of one of the most species-rich orders of vertebrates (Gobiiformes), and
calibrations from the rich fossil record of teleost fishes, that the genus Typhleotris, endemic to subterranean karst habitats in
southwestern Madagascar, is the sister group to Milyeringa, endemic to similar subterranean systems in northwestern
Australia. Both groups are eyeless, and our phylogenetic and biogeographic results show that these obligate cave fishes
now found on opposite ends of the Indian Ocean (separated by nearly 7,000 km) are each others closest relatives and owe
their origins to the break up of the southern supercontinent, Gondwana, at the end of the Cretaceous period. Trans-oceanic
sister-group relationships are otherwise unknown between blind, cave-adapted vertebrates and our results provide an
extraordinary case of Gondwanan vicariance.
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Introduction

Due to their limited long-distance dispersal capabilities,

freshwater fishes provide critical evidence for revealing ancient

biogeographic patterns [1–3] and those fishes that are also blind,

obligate cave-dwellers represent some of the least vagile organisms

on Earth [4–6]. Narrow endemicity in endogean organisms is due

not only to their lack of sight and pigment, but also to unique

physiologies and highly specialized ecological requirements [7].

Here we examine several lineages of cave-dwelling gobies residing

on opposite sides of the Indian Ocean.

Caves and other endogean systems provide habitat to highly

endemic and often bizarre organismal communities, including

many ‘relict’ species, the so-called ‘‘wrecks of ancient life’’ of

Darwin [6,8]. The endemic northwestern Australian genus

Milyeringa and the endemic southwestern Malagasy genus Typhleo-

tris are small (,100 mm) robust fishes with a sleeper goby

(Eleotridae) like morphology, except in lacking eyes and pigment

(with one pigmented exception, which is also the only known

darkly pigmented blind subterranean fish; Figure 1, Typhleotris n.

sp. [9]). Although they lack functional eyes, these fishes possess

elongated shovel-like snouts that are covered in neuromasts. There

are five species known from these genera, three species of

Typhleotris (one undescribed) and two species of Milyeringa. All are

eyeless subterranean dwellers, with very restricted distributions

within isolated cave-bearing limestone (karst) formations of

Australia (Cape Range Peninsula) and Madagascar (Mahafaly

Plateau).

Aquatic troglobites, more specifically known as stygobites, have

been shown to be wider ranging in general than non-aquatic

troglobites; however, this phenomenon has been demonstrated

only on a very fine geographic scale for vertebrates [4]. A major

issue plaguing our understanding regarding the evolution of cave

animals has been a lack of basic information regarding the

assembly of these biotas, including mechanisms of speciation and

phylogenetic origin [6]. Despite limitations imposed by a high

degree of morphological convergence and ‘regressive’ traits in

many cave animals, molecular phylogenetic techniques are

providing new insights [10]. Moreover, resolving the evolutionary

relationships of subterranean lineages is critical not only for

gaining insight into historical biogeography, but also the evolu-

tionary processes that have contributed to these diverse and

bizarre endogean biotas [11–14].

Here we use molecular phylogenetic methods to examine

a potential trans-oceanic sister-group relationship between obligate

cave-dwelling gobies. Our temporal phylogeny, based on multiple

fossil calibrations, is currently the most taxonomically compre-

hensive hypothesis of goby relationships. The analysis utilizes four

mitochondrial markers to resolve the relationships and ages of

these stygobitic taxa. Some evidence has suggested that mito-

chondrial markers may not be ideal for dating a potentially ancient

group [15]; although that study did not include multiple fossil

calibrations as ours does. Mitochondrial data has been used

extensively in studies that have investigated the evolutionary

relationships of fishes [16–17], including estimations of temporal

divergence [18–19]. Further, our current understanding of

gobiiform relationships builds largely on studies that used

mitochondrial data [20–22].

Gobies are one of the most diverse, widespread, and species-rich

lineages of vertebrates and include both marine and freshwater

taxa [22]. Blindness and reduced eyes have evolved rarely in fishes

and in gobies in particular (which contains more than 2200
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species). Besides, Typhleotris and Milyeringa, the only other truly

blind gobies are additional cave species: Glossogobius ankaranensis

(member of Gobiidae, known from caves in Madagascar and

sampled for the first time in this phylogenetic study), Caecogobius

cryptophthalmus (member of Gobiidae, known only from a few

specimens from caves in the Philippines), Oxyeleotris caeca (member

of Eleotridae, known from a few specimens from caves in Papua

New Guinea), Luciogobius pallidus, L.albus and Typhlogobius califor-

niensis (members of Gobiidae, marine or brackish species from

seaside caves) [23–24]. Reduced eyes are also known from fossorial

Figure 1. Evolutionary relationships and divergence times of Gobiiformes. Red horizontal bars represent 95% interval of potential
estimated divergence times for that clade. Vertical bars represent hypothesised timing of key geologic events based on geophysical data [27–29,33–
34] including: intact Eastern Gondwana landmass (Antarctica, Australia, Indo-Madagascar) in purple; separation of Indo-Madagascar from Antarctic
landmass in blue; and separation of Madagascar from India in green. Circles indicate likelihood-based ancestral character reconstructions for presence
of functional eyes (green), or the lack of functional eyes, i.e., blindness (blue).
doi:10.1371/journal.pone.0044083.g001
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goby species such as Traupauchen, but these species are not blind or

cave adapted. In general, the loss or reduction of eyes is rare in

fishes [25], occurring in less than 1% of described species (150

species of 28,000). Blindfishes are only known from 20 families (out

of more than 500 fish families); therefore, independent loss of eyes

and a transition to a sytogobitic life style is a rare event [26]. In our

study we examine several cave-adapted and eyeless members of

the goby lineage (including species of Typhleotris, Milyeringa,

Glossogobius and Typhlogobius) to examine the relationships of these

fishes and to examine the history of their blindness and troglodytic

life-style.

Results and Discussion

The recovered phylogenetic hypothesis represents both the most

thorough sampling of gobiiform fishes to-date, as well as the only

time-calibrated tree for one of the most species-rich orders of

vertebrates. Most notably, our phylogenetic analyses recovered

a sister group relationship between freshwater gobies of the genus

Typhleotris, endemic to subterranean karst habitats in southwestern

Madagascar and the genus Milyeringa, endemic to similar sub-

terranean systems in northwestern Australia (Figure 1, 2).

Although morphologically similar externally, these taxa had not

previously been demonstrated to be closely related. Our temporal

phylogeny, which includes calibrations from the rich fossil record

of teleost fishes, recovers an Early Cretaceous age for gobioid

fishes that corroborates recent geological and geophysical data.

These Earth history data indicate the last subaerial connection

between the Antarctica/Australia block and the Indo-Madagascar

landmasses occurred during the Early Cretaceous [27]. Our results

present a compelling example of an ancient vicariant pattern,

given the limitations for long-distance dispersal of obligate

subterranean lineages and the contemporary trans-oceanic dis-

tributions of these two lineages.

Geological and geophysical data for the regions that once

formed eastern Gondwana indicates that Australia maintained

a direct connection to Antarctica throughout the Cretaceous (145-

65 Ma; Figure 3) [27–29]. However, there is considerable debate

surrounding the location of the latest point of connectivity of the

Indo-Madagascar landmass to Antarctica, as well as the timing of

rifting leading to their subaerial isolation. A number of studies

have suggested that Antarctica remained connected to Indo-

Madagascar through causeways until the Late Cretaceous (<80

Ma), either via the Gunnerus Ridge [30–31], or the Kerguelen

Plateau [32]. However, using current geophysical reconstructions

to extrapolate the fit of these landmasses at the end of the

Cretaceous provides little direct evidence for the existence of

continuous causeways that would permit terrestrial biotic in-

terchange between the landmasses [27], particularly in light of

magnetic anomaly dating limitations imposed by the Cretaceous

Quiet Zone (KQZ) [33–34]. In the absence of Late Cretaceous

causeways, current geologic evidence indicates that the last

terrestrial connection between Indo-Madagascar and Antarctica

persisted until the mid-Aptian stage of the Early Cretaceous (<115

Ma) [27–29,33–34].

Our hypothesis of evolutionary relationships among major

lineages of gobiiform fishes based on likelihood and Bayesian

reconstructions of nucleotide characters (Figure 1, 2) recovered

Milyeringa and Typhleotris as sister lineages with high support

(.100% posterior probability; 73% bootstrap support; Figure 2).

This lineage of cave fishes was recovered as the sister group of the

very diverse and species rich Eleotridae (sleeper gobies; 130 species

[35]). Eleotrids have a widespread distribution, and occur in both

marine and freshwater environments throughout the Indo-Pacific

and Neotropics. Milyeringa and Typhleotris have previously been

considered to be members of Eleotridae [36]. Within the suborder

Gobioidei [21], we recovered a clade comprising four lineages,

with the predominantly Asian lineages Rhyacichthyidae +
Odontobutidae recovered as the sister taxon to a Milyeringa +
Typhleotris + Eleotridae clade (Figure 1, A). The clade including

Rhyacichthyidae, Odontobutidae, Milyeringa, Typhleotris, and Eleo-

tridae was recovered as the sister taxon to all remaining Gobioidei

families (i.e., Butidae, Gobionellidae, Gobiidae) as shown in

Figures 1 and 2. Estimates of divergence times calculated using

Bayesian approaches with multiple teleost fossil calibrations

recover ages for these lineages that are congruent with the Early

through Late Cretaceous fragmentation of Eastern Gondwana

(Figure 1–2, Table 1).

The sister-group relationship between Milyeringa and Typhleotris

represents an interesting example of a possible relict Gondwanan

lineage, potentially isolated in subterranean karst habitats since the

Mesozoic breakup of the southern supercontinent. Geophysical

reconstructions of Gondwana do not include a scenario in which

Australia and Madagascar directly abut each other, therefore it is

likely that the common ancestor of the clade comprising Milyeringa

+ Typhleotris and/or the clade comprising Milyeringa + Typhleotris +
Eleotridae clade was distributed throughout Eastern Gondwana

(particularly India) during the Early Cretaceous because the age of

this lineage corresponds to a time when this supercontinent was

intact (Figure 1, A to B). The exposed karst environments of

Madagascar and Australia that individuals of Typhleotris and

Milyeringa currently inhabit are also of similar geologic age

(Eocene) and composition [37–38]. These karst window habitats

are likely younger than their deeper subterranean connections, but

this relatively young age suggests that this lineage had a much

broader ancient distribution across the greater Eastern Gondwa-

nan region. Additional diversity may exist in Madagascar and

Australia, and rigorous sampling efforts by the authors in the

known karst habitats of both countries have yielded new species

[9,10]; however, given the sampling efforts to date it is unlikely

that these lineages would be profoundly more diverse than is

currently known on these two landmasses.

Few organisms have more limited long-distance dispersal

capabilities than troglobites, which are more or less tied to their

specific subterranean habitat [6]. The absence of eyes and pigment

makes troglobites easy targets for predators when exposed outside

of their isolated subterranean habitats, that often lack these

predators. The lack of pigmentation also presents physiological

limitations related to length of exposure to UV radiation from

sunlight. The absence of these traits are of no consequence in their

dark isolated subterranean environments; however, features such

as protective pigmentation and sight are likely required for

successful dispersal outside of those hypogean habitats. Notable

exceptions do exist among marine cave taxa that are similarly

vulnerable: Blind anchialine invertebrate stygiobionts, such as

members of Remipedia, have a global distribution and may be

capable of long-distance dispersal [39]. However, dispersal

between landlocked subterranean habitats are not well studied

among vertebrates and disjunctions even within a single landmass

are extremely rare; a transoceanic sister relationships as the one

discussed here are otherwise unknown. A likelihood ancestral

character reconstruction of the loss of functional eyes across the

suborder Gobioidei which includes other blind species (e.g.

Glossogobius, Typhlogobius) indicates that the common ancestor of

the Milyeringa + Typhleotris clade was most likely blind (Figure 1–2),

whereas the common ancestor of the Milyeringa + Typhleotris +
Eleotridae clade most likely had functional eyes. (A single blind

species of Eleotridae, only known from the types, Oxyeleotris caeca,

Sister Relationship between Obligate Troglobites
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was not included in this study because no samples are available).

Consequently, any post-Gondwanan breakup dispersal hypothesis

would potentially require interconnected subterranean habitats

connecting the former Eastern Gondwanan landmasses to account

for the disjunct distribution. This dispersal scenario is highly

unlikely, particularly given the lack of geological and geophysical

evidence for the existence of any such subterranean causeways

during the Late Cretaceous [27–29,33–34].

Recent long-distance dispersal or molecular sequence conver-

gence scenarios are far less likely explanations than vicariance of

widespread ancestral populations that were present in Eastern

Gondwana. Issues of long-branch attraction have been demon-

strated to impact parsimony analyses more severely than model-

based approaches (maximum likelihood and Bayesian methodol-

ogies), where an artificial relationship resulting from long-branch

attraction is less likely to be recovered [40–41]. We did not remove

third codon positions from our analyses because positions that may

have increased saturation have been demonstrated to provide

additional and critical phylogenetic signal [42]. Furthermore,

there are no observable indications of exceedingly long branches

among taxa in our analyses and there is no evidence to suggest that

long-branch attraction is causing the inference of any spurious

phylogenetic hypotheses in this study. All previous large-scale

molecular phylogenies of gobies are based on mitochondrial loci

[20–22], which restricts the type of genetic data we use here to

only mitochondrial information. Future work using nuclear DNA

is planned. However, the use of mitochondrial loci currently allows

for a breadth of taxonomic sampling within gobiiform fishes that

allow us to investigate whether cavefishes in Milyeringa and

Typhleotris are closely related. The sister-group relationship

between these two genera is well resolved and strongly supported

(Fig. 2).

It is possible that the ancestor of the Milyeringa + Typhleotris clade

may have exhibited a higher salinity tolerance than extant

populations, sufficient for entering a marine environment (some

populations of Milyeringa veritas are known from brackish habitats

[36]); however, juveniles and/or larvae of Milyeringa or Typhleotris

have never been recovered in marine habitats, and Typhleotris is not

salt tolerant. Given the Cretaceous age of the Milyeringa +
Typhleotris clade, it is also possible that extinction has had an

impact on this clade, with the extant subterranean lineages

persisting as relictual populations from a formerly wider distribu-

tion across Gondwana. This distribution may have included non-

cave dwelling species of Milyeringa and/or Typhleotris, however

there is no evidence of non-subterranean members of the

Milyeringa + Typhleotris lineage either from the fossil record or

extant species.

Our character state reconstructions of eye reduction and loss

support a single loss of functional eyes in the common ancestor of

the Milyeringa + Typhleotris clade. Adult and larval forms of

Figure 2. Evolutionary relationships and estimated divergence times for members of the order Gobiiformes. Grey horizontal bars
represent 95% interval of potential divergence times. Phylogeny on right indicates likelihood-based ancestral character reconstructions for presence
of functional eyes (grey lines), and functionally blind (black lines). An *indicates posterior probability support for node in the Bayesian analysis of
greater than 95%, whereas a diamond indicates a bootstrap greater than 60% for the likelihood reconstruction.
doi:10.1371/journal.pone.0044083.g002

Figure 3. Maps showing the Gondwana continents in the mid-Early Cretaceous (left) and at present (right), with orange dots
showing the current localities of Typhleotris (Madagascar) and Milyeringa (Australia).
doi:10.1371/journal.pone.0044083.g003
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Milyeringa lack eyes (larvae of Typhleotris have not been observed,

but adults and juveniles are eyeless). Although some eleotrids (the

sister lineage to the Milyeringa + Typhleotris clade) are freshwater

inhabitants as adults and disperse in the marine realm as juveniles,

no individuals of Milyeringa or Typhleotris have ever been observed

outside of their restricted karst habitat. However, the sister

relationship between these obligate cave dwellers and the widely

distributed Eleotrids may lend credence to a greater dispersal

ability in Milyeringa or Typhleotris taxa, or a wider distribution of

their shared ancestor. However, there is currently no evidence of

for widespread dispersal capabilities in taxa within Milyeringa and

Typhleotris.

Our divergence time estimates of Gobiiformes, calibrated using

the fossil record of teleosts, are congruent with the existence of

a widespread Early Cretaceous ancestor throughout Eastern

Gondwana. At present, several widely-distributed freshwater fish

assemblages exhibit phylogenetic patterns of relationship that are

congruent with the temporal sequence of the breakup of Western

and Eastern Gondwana during the Jurassic and Cretaceous,

including cichlids, melanotaeniid rainbowfishes, and aplocheilid

killifishes [3]. Although a sister-group relationship between

stygobites endemic to similar karst habitats on opposite ends of

the Indian Ocean might seem highly unlikely, our results indicate

that the evolutionary timing of divergence for gobioid fishes is

consistent with a Gondwanan vicariance hypothesis. Given these

data, this Gondwanan vicariance hypothesis is the simplest

explanation for the incredible disjunct distribution of this lineage

of Malagasy and Australian obligate cave fishes.

Materials and Methods

Four loci (4846 bp from ND1, ND2, cytB, and COI) were

sequenced for several populations across the range of Milyeringa

and Typhleotris and include all known species, including unde-

scribed forms (one representative population per species was

included in the final analysis). Loci were selected to permit

incorporation of the largest possible taxon sampling of Gobii-

formes by adding to the datasets of Thacker and others [16,20–21]

and our tree now represents the most taxonomically robust dataset

for gobiiforms. Outgroups included a breadth of acanthomorph

lineages (Figure 2). Each gene was assigned a separate model of

nucleotide substitution based on the Akaike information criteria

(AIC) performed in jMODELTEST 0.1.1 [43], including

HKY+G (COI), GTR+G (ND1), and GTR+I+G (ND2, cytB)

and sequences were aligned with MAFFT [44] using default

parameters. Novel sequences were submitted to GenBank (Table 2)

and the final alignment is available in Dryad (http://datadryad.

org/).

Topologies reconstructions and relative divergence times were

estimated simultaneously using BEAST v.1.6.1 [45] with an XML

template generated from BEAUTI v1.6.1 and results visualized in

TRACER v.1.5 [46]. Each gene was assigned a separate partition

based on the results from jMODELTEST test. Four independent

runs were performed with 50 million generations each, with

a burnin of 10 million generations for each analysis. Trees were

sampled every 10,000 iterations, for a total of 20,000 trees (16,000

post-burnin). The effective sample size of all parameters converged

on a stationary distribution. A 50% maximum clade credibility

(mean heights) tree was generated from the posterior tree

distribution (Figures 1, 2).

A maximum likelihood topology reconstruction was performed

in GARLI 2.0 [47] with each gene assigned a separate partition.

The likelihood analysis was replicated ten times, and topologies

were identical to the mean tree recovered in the Bayesian analysis

(Figure 2). Likelihood-based ancestral character state reconstruc-

tion was performed in Mesquite 2.7 [48] (Figure 1, 2).

Fossil calibrations were assigned a lognormal prior, with hard

minimum ages based on the oldest known fossil of the respective

lineages. A conservative soft upper bound was set to 150 Ma for all

calibrations, the age of the oldest known fossil euteleost,

{Leptolepides sprattiformis [49]. Acanthomorpha (C1): A minimum

age of 94 Ma was used based on fossil taxa from the extant stem

acanthomorph lineage Polymixia [50]. Beryciformes (C2): A

minimum age of 94 Ma was used based on the fossil taxa

{Hoplopteryx simus and {Hoplopteryx lewesiensis known from Middle–

Upper Cenomanian deposits [50]. Chaetodontidae (C3): The

Table 1. Estimated divergence times of gobioid lineages.

Clade Mean Age (95% HPD)

Gobiiformes 140 Ma (190–101 Ma)

Gobioidei 122 Ma (170–85 Ma)

Rhyacichthyidae + Odontobutidae 98 Ma (136–63 Ma)

Milyeringa + Typhleotris + Eleotridae (A) 109 Ma (150–74 Ma)

Milyeringa + Typhleotris (B) 77 Ma (116–44 Ma)

Typhleotris 28 Ma (46–14 Ma)

Milyeringa 4 Ma (7–1.5 Ma)

Eleotridae 92 Ma (129–60 Ma)

Butidae 99 Ma (139–62 Ma)

Gobionellidae 103 Ma (139–71 Ma)

Gobiidae 108 Ma (145–74 Ma)

Divergence times correspond to those depicted in Figures 1 and 2. Ages are
expressed in millions of years ago (Ma), with the mean age and the 95% higher
posterior densities of potential divergence times (HPD). Letter in parentheses
corresponds to the clade in Figure 1.
doi:10.1371/journal.pone.0044083.t001

Table 2. GenBank accession numbers for molecular samples
used in phylogenetic analyses.

GenBank #Gene Taxon AMNH Cat #

JQ619660 CytB Typhleotris new sp. 245601

JQ619661 CytB Typhleotris madagascariensis 245609

JQ619662 CytB Typhleotris pauliani 245649

JQ619663 CytB Glossogobius ankaranensis 245682

JQ619664 CytB Glossogobius callidus 245685

JQ619665 COI Typhleotris new sp 245601

JQ619666 COI Typhleotris madagascariensis 245609

JQ619667 COI Typhleotris pauliani 245649

JQ619668 COI Glossogobius ankaranensis 245682

JQ619669 COI Glossogobius callidus 245685

JQ619670 ND1 Typhleotris new sp. 245601

JQ619671 ND1 Typhleotris madagascariensis 245609

JQ619672 ND1 Typhleotris pauliani 245649

JQ619673 ND1 Glossogobius ankaranensis 245682

JQ619674 ND1 Glossogobius callidus 245685

American Museum of Natural History (AMNH) catalog number is listed in the
last column. ‘‘Typhleotris new sp.’’ refers to a new species being described [9].
Genetic sequences from the holotype of the new species are hologenetypes,
following the nomenclature of Chakrabarty [53] and are in bold.
doi:10.1371/journal.pone.0044083.t002
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minimum age of 30 Ma was assigned based on the oldest fossil

representative of the family {Chaetodonidae cf. Chaetodon known

from Rupelian deposits [51]. Gobiidae (C4): Minimum age of the

family Gobiidae was established based on fossils identified in

Miller [52] as belonging to this family with an Eocene age of 33.9

Ma.
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